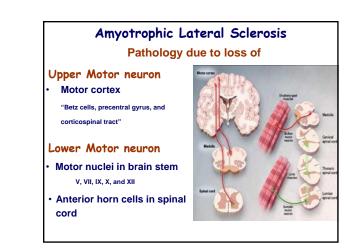
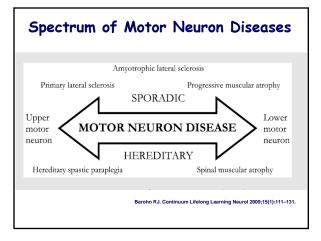
Cardiopulmonary Dysfunction and Amyotrophic Lateral Sclerosis

Perspectives On Physical Therapy Evaluation and Intervention

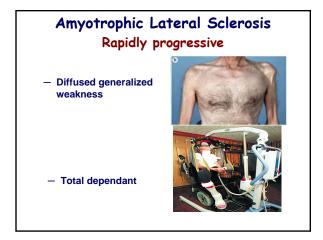

Mohammed Sanjak, PhD, PT

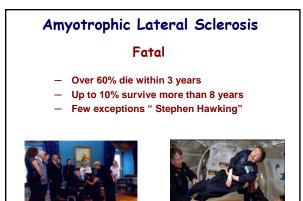

Carolinas Neuromuscular/ALS-MDA Center Neuroscience and Spine Institute Department of Neurology Carolinas Medical Center Department of Kinesiology University of North Carolina Charlotte, NC. USA

Objectives

- Understand the pathophysiology of ALS
- Measuring disease progression
- Physical Therapy "therapeutic exercise" interventions in ALS.






- 10% Familial
- Incidence: 2.6 per 100,000 = MS and 5x >Huntington's
- Prevalence; 3 -7 per 100,000 individuals
- Sex: Males 1.5 -2 times > females
- Race: white-to-nonwhite ratio is 1.6:1.
- Age: fourth to seventh decades of life.

Amyotrophic Lateral Sclerosis Phenotype Phenotype based on site of onset Limb 65% Bulbar 30% Respiratory 5%

 Bulbar form more rapid deterioration and death

Mechanisms of Motor Neuron Injury

- Not Known
- Glutamate toxicity
- Oxidative stress
- Protein aggregation
- Mitochondrial dysfunction
- Neuroinflammation
- Current experimental trials are targeting these pathways
- Riluzole, a glutamate antagonist
- Neudexta for Emotional lability (Pseudobulbar affect) are the only FDA approved drug to treat ALS

Diagnosis of ALS

- Hard to diagnose : Mimics other common diseases
- Late to get to neurologist
- No definitive biomarker or electrophysiological test.
- The diagnosis is established by excluding other causes of progressive UMN and LMN dysfunctions
- Certainty of the diagnosis is based on clinical signs, symptoms, and progression according to the El Escorial criteria

Brooks BR et al. Amyotroph Lateral Scler Other Motor Neuron Disord.;1(5):293-9, 2000

Management of ALS

EFNS GUIDELINES

EFNS guidelines on the Clinical Management of Amyotrophic Lateral Sclerosis (MALS) – revised report of an EFNS task force

The EFNS Task Force on Diagnosis and Management of Amyotrophic Lateral Scierosis: Peter M. Andersen⁴, Sharon Abrahams¹, Gian D. Borasio⁶, Marnede de Carvalho⁶, Adriano Chio⁸, Philip Van Damme¹, Orta Hardinma⁹, Katja Kollewe¹, Karen E. Morrisor¹, Susanne Petri¹, Pierre-Francois Pradat¹, Vincenzo Silan⁵, Barbara Tormi¹, Maria Wasner¹⁹ and Markus Weber¹⁰ an Damme .

Miller RG, Jackson CE, Ksarskis EJ, et al. Practice Parameter update: The care of the patient with amyotrophic lateral sclerosis: Multidisciplinary care, symptom management, and cognitive/behavioral impairment (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. *Neurology* 2009;73:1227-1233

Miller RG, Jackson CE, Ksarskis EJ, et al. Practice Parameter Update: The care of the patient with amyotrophic lateral sclerosis: Drug, nutritional, and respiratory therapies (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. *Neurology* 2009; 73:1218-1226

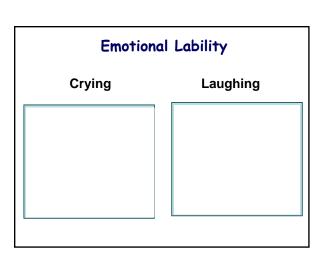
Management of ALS **Multidisciplinary ALS Clinic**

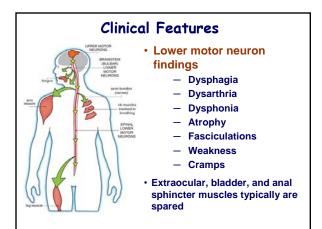
Consultants

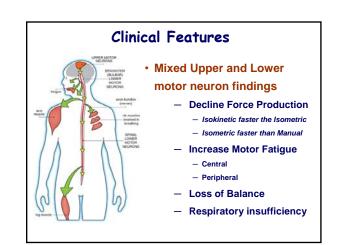
physician

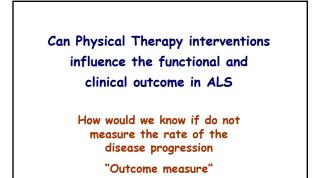
Associates

Rehabilitation

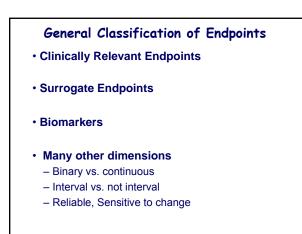

Pulmonologist

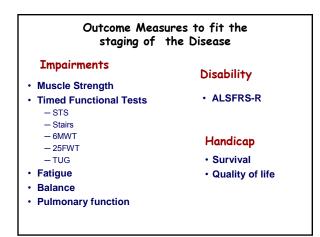

Gastroenterologist

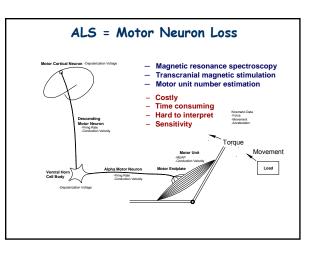

Research scientists

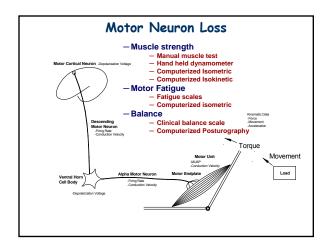

Core Members

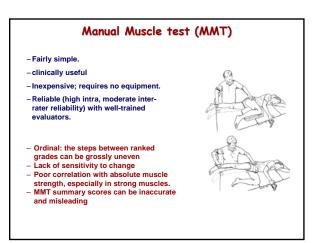
- Neurologist
- Nurse
- Speech pathologist
- Dietitian
- Respiratory therapist
- Physical therapist
- Occupational therapist
- Social worker
- Rehabilitation technologist
- Psychologist
- Clinical Features Upper motor neuron findings - Spasticity - Hyperreflexia - Babinski's response Hoffmann's sign - Pseudo bulbar features "emotional lability" **Cognitive and Frontotemporal** Lobe Dementia

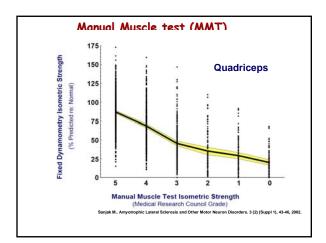


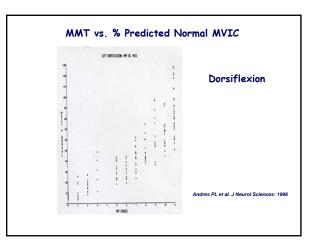


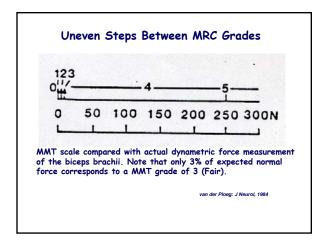


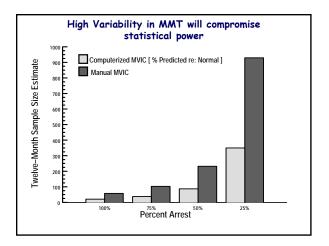


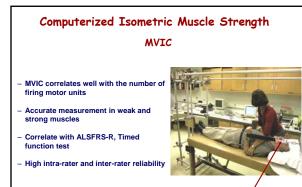


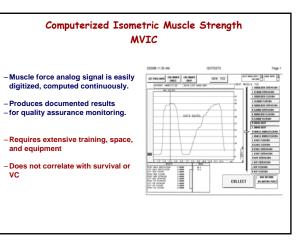


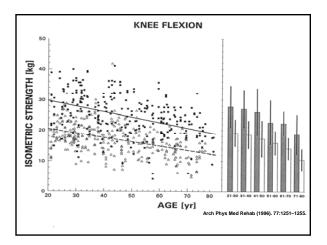


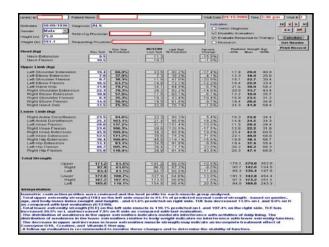


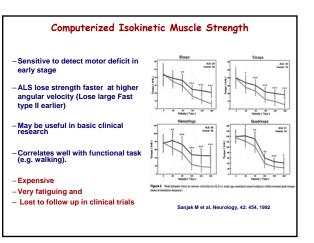


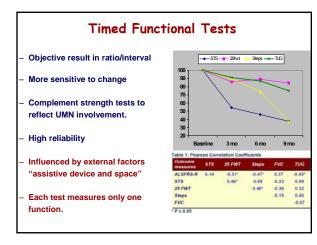


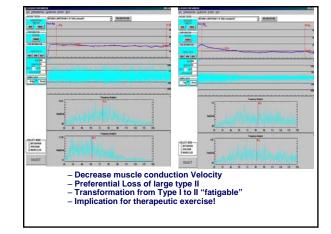


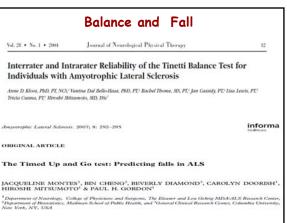


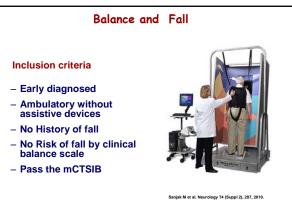


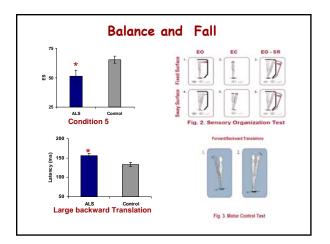

Computer-based, fixed strain-gauge

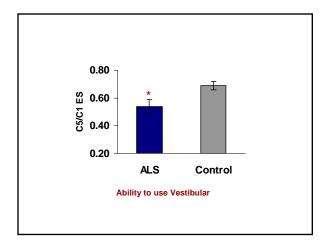




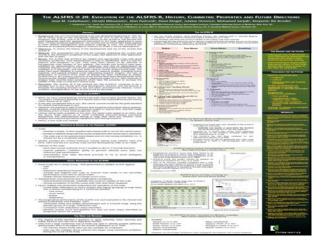




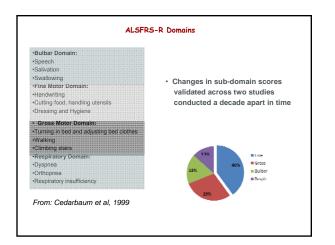


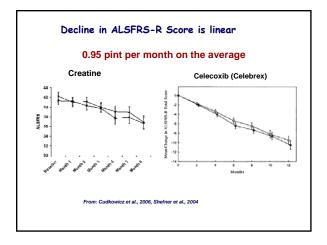


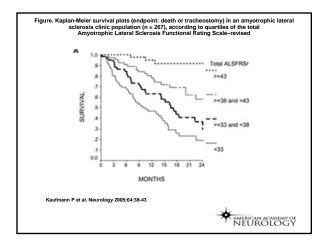


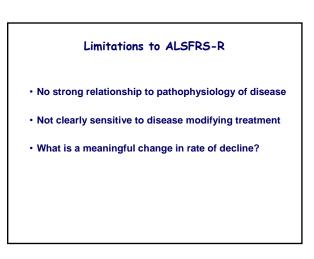


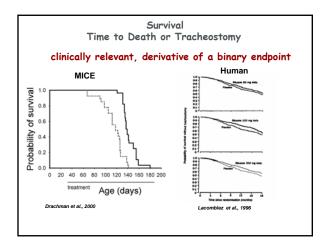

	Test/Evalua	tion		Mean ± SD	
	ALSFRS-R			40.9 ± 4	
	VC %			90 ± 19	
	25FWT (sec)		4.4 ± 0.7	
	Up and dow	n 4 steps ((sec)	4.5 ± 0.8	
Table 2.	Balance Ev	aluation.			
Balance Scale	Mean ± SD	Range Min-Max	Risk of fall score		
DGI	22.7 ± 1.1	21-24	17-1	9/24 = ↑ Ris	k of falls
			41-5	6 = indeper	ndent
BBS	55.6 ± 0.8	54-56	< 41	= ↑ Risk f	or falls
TUG	6.5 ± 1.1	5.1-9.0	> 14	sec= Risk f	for falls

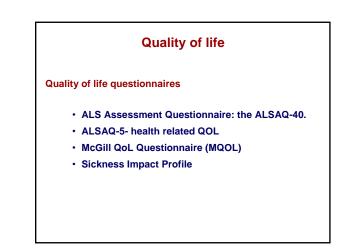


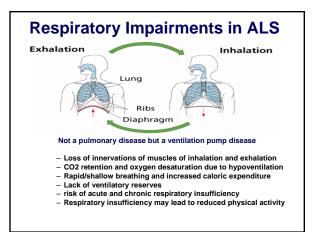


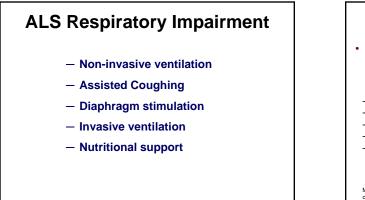


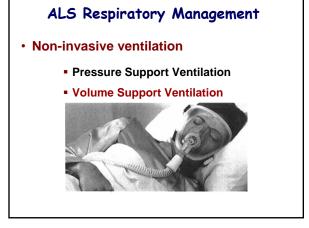










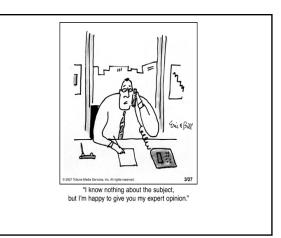


Non-invasive ventilation

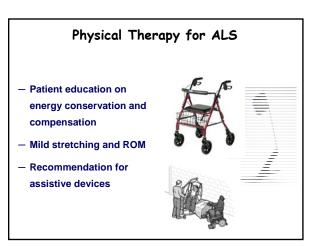
The best treatment for Respiratory insufficiency

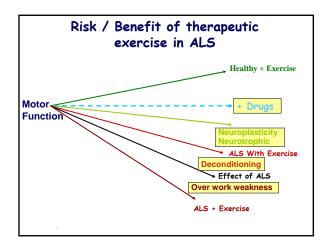
- Relief respiratory distress
- Improve mental awareness
- Improves quality of life
- Extends Survival
- Reduce progression of respiratory muscle function

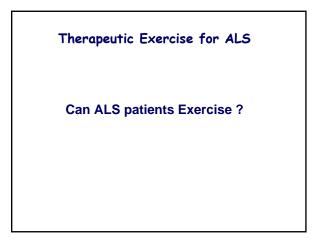
Mustfa N, Walsh E, Bryant V, et al. The effect of noninvasive ventilation on ALS patients and their caregivers. Neurology 2006; 66: 1211–1217.

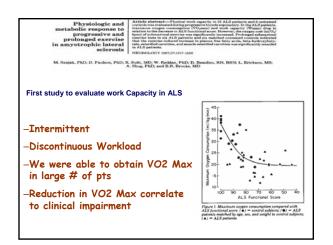


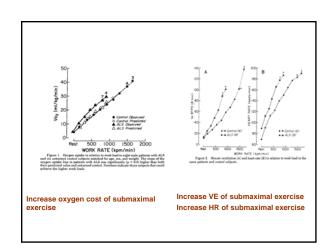
ALS Respiratory Management

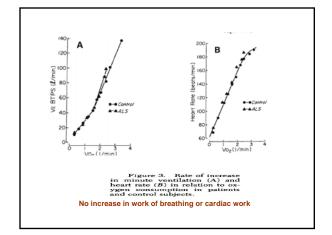

Key Points to Remember

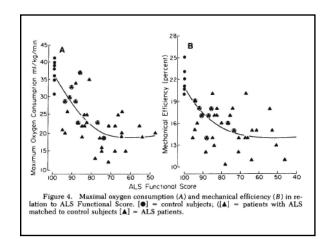

- CPAP is <u>NOT</u> for ALS, it is for sleep apnea
- Volume Support Ventilation
- No direct O2 supply to ALS patients
- Keep it in the back of your mind when managing exercising the patient
 - -SOB
 - -Borg perceived exertion
 - -Monitor O2 saturation and heart rate

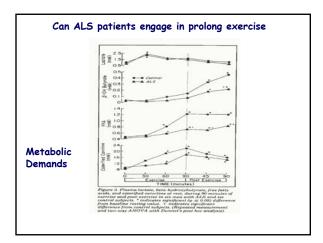

Can exercise improve clinical and functional outcome in ALS

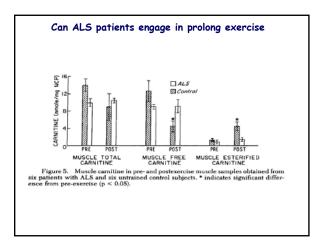


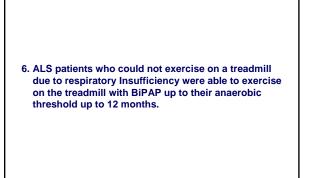

SESSION 9B EXERCISE, METAI NUTRITION	BOLISM AND
C82 IS EXERCISE A PREDISPOSING ALS? THE CASE FOR	G FACTOR IN Cardiac P
CHIÒ A Department of Neuroscience, Torino, Italy	Parkinson MS
50/50 split	Cancer
	etc>>>>
C83 IS EXERCISE A PREDISPOSING FOR ALS? <u>THE CASE AGAINST</u>	3 FACTOR
wokke j, veldink j, van den berg	3 L
Department of Neurology, University Medica Netherlands	l Centre, Utrecht, Lateral Scierosis, 2009 (Suppl. 1); 10: 7 6











Conclusion

- 1. The cardiopulmonary response to exercise in ALS is normal ±
- 2. Reduce in $V0_2$ max correlate to clinical impairment (Lower Vo2 max = lower ALS score)
- 3. ALS patients could exercise up to 90 min at 50% of their VO2 max with no adverse effect.
- 4. Similar lactate levels in ALS patients and controls suggest that there was no hypoxia in the muscles
- 5. Increase oxygen cost and decrease mechanical efficiency may requires attention O2 desaturation and to supply O2 if necessary.

± Mezzani A et al. Amyotrophic Lateral Sclerosis, 1–8, 2011

Pinto AC et al. J Neurol Sci; 169:69-75, 1999

Can ALS patients response to exercise training?

Few studies

Regular exercise training in ALS Case Study

46-year-old man, Norris ALS score = 93/100, ALS duration approximately 1 year, upper motor neuron signs in the upper extremities (UE), and mixed dysfunction in the lower extremities (LE) (Weaker).

Home Exercise Regiment

- combined arm and leg training using an Air-Dyne bicycle ergometer
- At 50% 0f predetermined $\,$ Vo2 $\,$
- 4 days per week, 6 weeks.
- 30 minutes per day (5 minutes work and 5 minutes rest),

Sanjak Met al. Neurol Clin, 1987; 5:251–268.

Regular exercise training in ALS

Results: Pre to post exercise training

- 1. Increase V0₂ max , W max, and VE max
- 2. Increase maximal HR
- 3. Decrease resting HR, indicating a cardiovascular training effect
- 4. No change in muscle strength

Sanjak M et al. Neurol Clin, 1987; 5:251-268.

Regular exercise training in ALS

- RCT (n=25), early diagnosed ALS patients
- Moderate range of motion training designed to improve muscle endurance (n=14) or regular daily activities (n=11)
- 15-minutes, twice-daily for 6 months
- At 3 mo: significantly less decline in ALSFRS and Ashworth Scale scores with no effect on muscle strength
- At 6 mo, no significant difference between groups, but a strong trend was shown towards a protective effect in the treatment group
- At 9 and 12 months, there were too few patients in each group for statistical evaluation
 Drory Ve et al. J Neurol Sci: 191:133-137. 2003

Regular exercise training in ALS

- RCT in 27 ALS patients.
- daily resistance exercise and stretching (n=13) vs. Stretching alone (n=14)
- 3X a week
- After 6 months
 - Quality of life was better
 - Less ALS functional rating score decline

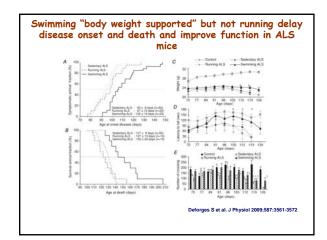
V. Dal Bello-Hass et al Neurology 2007 88:2003-2007

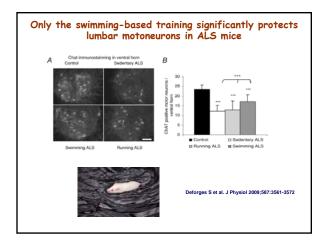
What is Lacking ? The Parameters

- > Type (Aerobic, Resistant)
- Mode (Treadmill, Bicycle, Swimming)
- Dosing
 - ✓ Duration
 - ✓ Frequency
 - ✓ Intensity
 - ✓ Repetition
 - ✓ Progression

Lessons from Animals using transgenic mice Model of ALS

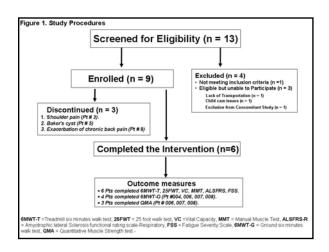
High Intensity Decrease motor performance

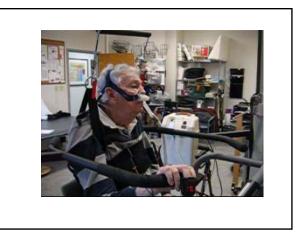

 low to moderate treadmill running speed (3.4 to 16 m/min) improved survival, and delayed the onset of motor deficit

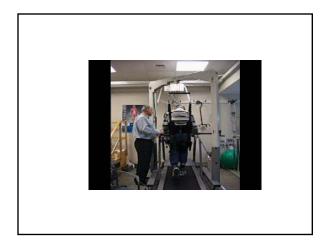

 intense treadmill running speed (> 22 m/min) decreased survival and hastened motor function

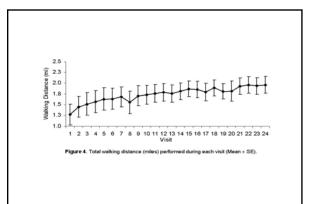

Carreras I et al. Moderate exercise delays the motor performance decline in a transgenic model of ALS. Brain Res, 2010; 1313:192-201.

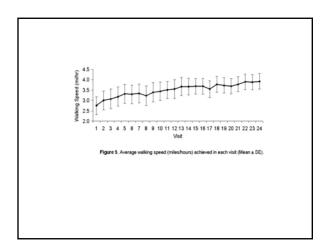
Mahoney DJ et al. Effects of high-intensity endurance exercise training in the G93A mouse model of amyotrophic lateral sclerosis. Muscle Nerve. 2004 May;29(5):656-62

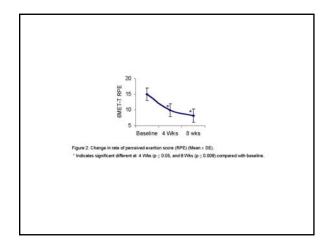


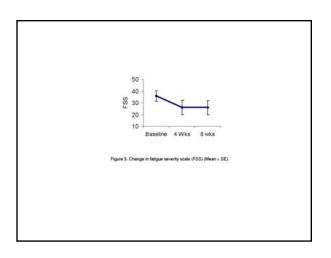

- Stand and ambulate independently with AD. ≻
- Complete the 25FWT < 1 minute. >
- VC ≥ 65% ≻
- > Use of NIV is OK

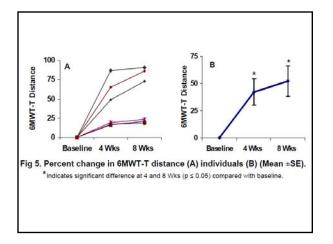


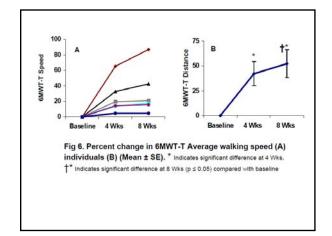

Patient #	Sex	Age (Yrs)	Ht (in)	Weight (lb)	BMI (m²)	Assistive Device Used
001	F	58	64	111	19	Bi AFOs, 4 WW, PWC
002	F	41	68	150	23	L AFO
003	F	61	61	139	27	Bi AFOs, 4 WW, PWC
004	M	39	74	203	26	Bi AFOs
005	М	72	73	183	26	4 WW, BiPAP
006	М	77	70	150	22	Bi AFOs, 4 WW
007	F	68	67	148	23	4 WW
008	M	65	66	155	25	Bi AFOs
009	F	77	65	124	19	Bi AFOs, BiPAP

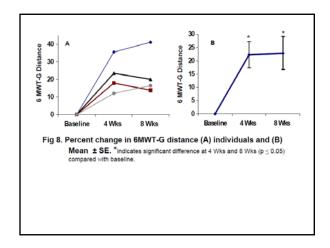


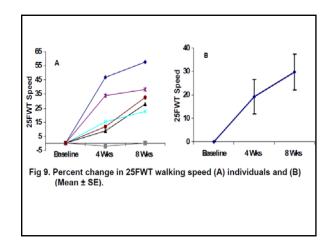


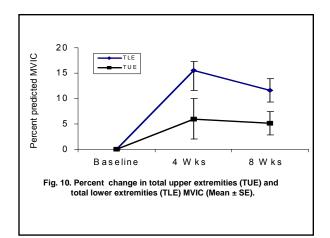











Outcome	Baseline	4 wks	8 wks	P valu
ALSFRS-R	34 ± 5	38 ± 6	37 ± 6	0.022
VC (%)	88 ± 16	92 ± 17	93 ± 19	0.433
	62 ± 12			
LSFRS-R=Amyotrophic LMMT=Total lower extre indicates statistically sig	emities manual mu	scle test (Mean		VC=Vital capa

