

To improve walking function in ambulatory patients with stroke, incomplete spinal cord injury, and brain injury...

Should therapists focus on normalizing kinematics?

Specificity

Intensity

Repetition

What does the data say?

The locomotor CPG¹ recommends focusing on three active ingredients for our interventions. Recommended interventions are <u>specific</u> to gait, challenge aerobic <u>intensity</u>, in high <u>repetitions</u>. How does this recommendation compare to other approaches?

Paradigm	Theory	Method	Evidence	Active Ingredients?
Impairment- based treatment	Address underlying	Standing balance and weight shifting exercises, lower	 Poor and inconsistent carryover of impairment-based treatment into walking function.¹⁻⁴ 	Specificity
	impairments leading to gait	extremity strength & transfer training.	 Less effective than High Intensity Gait Training (HIGT) for walking speed, distance, and quality.³⁻⁶ 	Intensity?
	abnormalities		• No more effective than HIGT for transfers & balance. ³⁻⁵	Repetition
Bobath / Neuro Developmental	Sensory input is fundamental to	Movement analysis followed by part & whole task training that	• Less effective than other interventions for improving gait speed, gait quality, and length of stay. ²	Specificity?
Treatment (NDT)	motor control and normal movement patterns define	minimizes compensatory movements. Sensory input provided to facilitate desired	 Even with experienced and highly NDT-trained clinicians, gait quality or speed may not improve.⁸ 	Intensity 🔕
	success ⁷	movement quality. ⁷		Repetition 🚫
Body Weight Supported Treadmill	Use of sensory input to stimulate central pattern	Partial weight support provided while focusing on optimal kinematics, weight bearing, and	• Neither BWSTT nor RAS is superior to traditional low intensity overground gait training or treadmill training with a single therapist. ^{1,9}	Specificity 🗸
Training (BWSTT) and	generators and activity-induced	sensory input with 2-3 therapists (BWSTT) or a robot	 Both require additional personnel and equipment resources. 	Intensity 🔇
Robotic Assisted Stepping (RAS)	neuroplasticity ⁹	(RAS).	 Excessive therapist or robotic assist limits intensity. Practicing normal movement patterns does not result in more normalized spatiotemporal patterns.¹⁰ 	Repetition V
High Intensity Gait Training	High aerobic intensity and	Stepping practice at high aerobic intensities (70-85% HRmax), without specific focus	• Consistent improvements in walking speed & distance compared to conventional PT. ^{1,3-5}	Specificity V
(HIGT)	repetitive stepping in variable contexts	on training normal movement, on a treadmill, overground, and	 Better outcomes than lower intensity walking practice.¹¹ Better outcomes than high intensity impairment-based tx.³ Increases muscle activity but does not worsen spastic 	Intensity 🗸
	may drive neuroplasticity and adaptations in cardiopulmonary fitness during gait	stairs. ¹² Successful defined by achieving essential Biomechanical Subcomponents (see reverse).	 muscle behaviors.¹³ Improved walking function via recovery of more normalized kinematics, improved motor neuro pool selection, more consistent intralimb coordination, and increased non- 	Repetition V
	training		paretic limb force generation and excursion. ^{6,14-15}	

Evidence Summary

- A focus on normal kinematics is **not** a critical training parameter and in fact can reduce the amount and intensity of task-specific walking practice.
- High Intensity Gait Training, despite not focusing on normal kinematics, improves gait quality better than conventional approaches while also achieving superior improvements in walking speed & distance.
- Intensity Matters!

References:

- 1. Hornby TG, et al. Clinical Practice Guideline to Improve Locomotor Function Following Chronic Stroke, Incomplete Spinal Cord Injury, and Brain Injury. *Journal of Neurologic Physical Therapy*. 2020; 44: 49-100.
- 2. Veerbeek JM, et al. What is the Evidence for Physical Therapy Poststroke? A Systematic Review and Meta-analysis. *PLoS One.* 2014; 9(2): E87987.
- 3. Lotter JK, et al. Task-Specific Versus Impairment-based Training on Locomotor Performance in Individuals with Chronic Spinal Cord Injury: A Randomized Crossover Study. *Neurorehabilitation and Neural Repair*. 2020; 34(7): 627-639.
- 4. Hornby TG, et al. Variable Intensive Early Walking Poststroke (VIEWS): A Randomized Controlled Trial. *Neurorehabilitation and Neural Repair*. 2016; 30(5): 440-450.
- 5. Moore JL, et al. Implementation of High-Intensity Stepping Training During Inpatient Stroke Rehabilitation Improves Functional Outcomes. *Stroke*. 2020: 51: 563-570.
- 6. Mahtani GB, et al. Altered Sagittal- and Frontal-Plane Kinematics Following High Intensity Stepping Training Versus Conventional Interventions in Subacute Stroke. *Physical Therapy Journal*. 2017; 97(3): 320-329.
- 7. Vaughan-Graham J, et al. The Bobath (NDT) concept in adult neurological rehabilitation: what is the state of the knowledge? A scoping review. Part I: conceptual perspectives. *Disability and Rehabilitation*. 2015; 37(20): 1793-1807.
- 8. Lennon S, et al. Gait outcome in outpatient physiotherapy based on the Bobath concept in people post stroke. Disability and Rehabilitation. 2006; 28(13-14): 873-881.
- 9. Dobkin B, et al. Should Body Weight-Supported Treadmill Training and Robotic-Assistive Steppers for Locomotor Training Trot Back to the Starting Gate? *Neurorehabil Neural Repair*. 2012; 26(4): 308-317.
- 10. Hornby TG, et al. Enhanced Gait-Related Improvements After Therapist- Versus Robotic-Assisted Locomotor Training in Subjects with Chronic Stroke: A Randomized Controlled Study. *Stroke.* 2008; 39(6): 1786-1792.
- 11. Hornby TG, et al. Contributions of Stepping Intensity and Variability to Mobility in Individuals Poststroke: A Randomized Clinical Trial. Stroke. 2019; 50(9): 2492-2499.
- 12. Holleran CL, et al. Feasibility and Potential Efficacy of High-Intensity Stepping Training in Variable Contexts in Subacute and Chronic Stroke. *Neurorehabilitation and Neural Repair*. 2014; 28(7): 643-651.
- 13. Leech KA, et al. Effects of Locomotor Exercise Intensity on Gait Performance in Individuals With Incomplete Spinal Cord Injury. *Physical Therapy Journal.* 2016; 96(12): 1919-1929.
- 14. Ardestani MM, et al. Compensation or Recovery? Altered Kinetics and Neuromuscular Synergies Following High-Intensity Stepping Training Poststroke. *Neurorehabilitation and Neural Repair*. 2019; 33(1): 47-58.
- 15. Ardestani MM, et al. Kinematic and Neuromuscular Adaptations in Incomplete Spinal Cord Injury after High- versus Low-Intensity Locomotor Training. *Journal of Neurotrauma*. 2019; 36: 2036-2044.