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Abstract

Background: There is a wealth of evidence detailing gray matter degeneration

and loss of cognitive function over time in individuals with Huntington’s dis-

ease (HD). Efforts to attenuate disease-related brain and cognitive changes have

been unsuccessful to date. Multidisciplinary rehabilitation, comprising motor

and cognitive intervention, has been shown to positively impact on functional

capacity, depression, quality of life and some aspects of cognition in individuals

with HD. This exploratory study aimed to evaluate, for the first time, whether

multidisciplinary rehabilitation can slow further deterioration of disease-related

brain changes and related cognitive deficits in individuals with manifest HD.

Methods: Fifteen participants who manifest HD undertook a multidisciplinary

rehabilitation intervention spanning 9 months. The intervention consisted of

once-weekly supervised clinical exercise, thrice-weekly self-directed home based

exercise and fortnightly occupational therapy. Participants were assessed using

MR imaging and validated cognitive measures at baseline and after 9 months.

Results: Participants displayed significantly increased gray matter volume in the

right caudate and bilaterally in the dorsolateral prefrontal cortex after 9 months

of multidisciplinary rehabilitation. Volumetric increases in gray matter were

accompanied by significant improvements in verbal learning and memory

(Hopkins Verbal Learning-Test). A significant association was found between

gray matter volume increases in the dorsolateral prefrontal cortex and perfor-

mance on verbal learning and memory. Conclusions: This study provides preli-

minary evidence that multidisciplinary rehabilitation positively impacts on gray

matter changes and cognitive functions relating to verbal learning and memory

in individuals with manifest HD. Larger controlled trials are required to con-

firm these preliminary findings.

Introduction

Huntington’s disease (HD) is a degenerative disorder of

the nervous system caused by an unstable cytosine-ade-

nine-guanine (CAG) expansion in exon 1 of the HTT

gene (MacDonald et al. 1993). Despite progress, there is

still no cure and available drug agents only provide partial

relief of motor and psychiatric symptoms. There is, there-

fore, an urgent need to trial treatments that can impact

on disease-related brain changes and clinical aspects of

HD.

Over the last decade, parcellation and voxel based mor-

phometry (VBM) imaging studies have shown evidence of

grey matter (GM) degeneration in cortical and subcortical

brain structures in HD (Hobbs et al. 2011; Dominguez

et al. 2013; Georgiou-Karistianis et al. 2013a). Degenera-

tion of GM is particularly pronounced in the striatum,

commencing up to 20 years prior to clinical onset

ª 2015 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

Brain and Behavior, doi: 10.1002/brb3.312 (1 of 10)



(Georgiou-Karistianis et al. 2013a; Tabrizi et al. 2013).

Over the course of the disease, GM loss becomes more wide-

spread, with atrophy also observed in frontal and occipital

cortices (Dominguez et al. 2013; Tabrizi et al. 2013).

Deficits in cognitive function also arise in HD, even

prior to diagnosis, presumably as a result of the neurode-

generative processes (Stout et al. 2012). In early HD,

there are documented deficits in attention (Georgiou-

Karistianis et al. 2012), psychomotor speed (Stout et al.

2012), working memory (Stout et al. 2012), planning and

inhibition (Ho et al. 2003). In the absence of effective

treatments, these deficits worsen over time, negatively

impacting on functional independence and quality of life

(Eddy and Rickards 2013).

The loss of GM has been shown to correlate with a

decline in cognitive performance in HD. Scahill et al.

(2013) have shown that loss of GM in cortical and sub-

cortical structures significantly correlates with poorer per-

formance on emotional recognition, working memory

and odor identification tasks. Harrington et al. (2014)

have further shown that degeneration of fronto-striatal

and fronto-parietal structures correlates with poorer per-

formance on attention, processing speed, verbal learning

and memory and emotional recognition tasks.

Recent evidence suggests that lifestyle factors signifi-

cantly influence disease-related brain and cognitive

changes in HD. Bonner-Jackson et al. (2013) have shown

that greater cognitive reserve (computed as the composite

of innate intelligence and educational level) is associated

with a slower rate of volume loss in the caudate nucleus

and putamen and greater preservation of cognitive func-

tion in premanifest HD. Moreover, higher education sta-

tus is significantly associated with a better cognitive

outcome on the Unified Huntington’s Disease Rating

Scale (UHDRS) in manifest HD (L�opez-Send�on et al.

2011). Finally, lifestyle passivity has been shown to signifi-

cantly influence the onset of symptoms in HD (Trembath

et al. 2010). Treatment strategies that enrich lifestyle may

impact on disease-related brain changes and a loss of cog-

nitive function in HD and warrant further investigation.

Previous studies have shown that environmental enrich-

ment can preserve peristriatal structures and cognitive

function in HD rodent models (van Dellen et al. 2000;

Wood et al. 2010). Moreover, lifestyle interventions, such

as multidisciplinary rehabilitation, have been shown to

improve aspects of cognition, functional capacity, depres-

sion and quality of life (Zinzi et al. 2007; Veenhuizen et al.

2011; Piira et al. 2013; Thompson et al. 2013). When

assessed separately, cognitive and motor interventions have

also been reported to increase hippocampal, GM and white

matter volume in the elderly and those with neurodegener-

ative disorders (Erickson et al. 2011; Burciu et al. 2013;

Bonzano et al. 2014; K€uhn et al. 2014).

The outlined findings informed our decision to evalu-

ate the utility of multidisciplinary rehabilitation on dis-

ease-related brain changes and cognitive function in

manifest HD. Specifically, we evaluated the effects of mul-

tidisciplinary rehabilitation on attenuating GM loss and

associated declines in cognitive function. We hypothesized

that multidisciplinary rehabilitation would increase GM

volume in dorsolateral prefrontal cortex (DLPFC), stria-

tum, and hippocampus structures that are known to be

functionally relevant to cognitive function. In addition,

we expected GM volume increases to be associated with

better cognitive outcomes.

Materials and Methods

Study design

The present investigation was a 9 month exploratory

study on the effects of multidisciplinary rehabilitation on

brain structure and cognition in individuals with manifest

HD. The duration of the intervention was chosen for two

reasons: (1) structural changes can be detected in individ-

uals with manifest HD after 6 months (Henley et al.

2006), and (2) evidence has shown that rehabilitation

interventions can have favorable effects on brain structure

after 2 weeks (Burciu et al. 2013).

Study approval, registration, and patient
consent

Ethical approval was granted by the Edith Cowan

University and North Metropolitan Area Mental Health

Service (NMAMHS) Human Research Ethics Committees.

Written informed consent was provided by all partici-

pants.

Participants

Fifteen participants with manifest HD were recruited

using the North Metropolitan Area Mental Health Service

Neuroscience Unit Database. Inclusion criteria included a

family history of HD, a positive genetic test for the HD

mutation (CAG >39), manifest disease [Unified Hunting-

ton’s Disease Rating Scale-Total Motor Score (UHDRS-

TMS) >5], the capacity to follow written or verbal

instruction, the ability to perform submaximal aerobic

and resistive exercise and aged 18 years or older. Partici-

pants were excluded if they suffered from recent drug or

alcohol abuse, had a confounding neurological condition

or concomitant physical, cardiovascular or respiratory

condition which contraindicated exercise. Medication

adjustments were recorded routinely throughout the trial

(see Table 1).
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Multidisciplinary rehabilitation intervention

The intervention was designed after baseline assessment

of the participants by an experienced interdisciplinary

team consisting of physical therapists, exercise physiolo-

gists, occupational therapists, and strength and condition-

ing specialists. The intervention consisted of a clinical

exercise program, a home-based exercise program and

fortnightly occupational therapy. The clinical exercise

program consisted of supervised weekly aerobic and resis-

tance exercises for an hour. The home-based exercise pro-

gram involved thrice weekly self-directed muscle

strengthening and fine motor exercises for an hour. Occu-

pational therapy consisted of a variety of paper and pen-

cil, verbal planning, memory, and problem solving

exercises designed to enhance cognition and executive

function (see the online Appendix S1 for specific details

on the multidisciplinary rehabilitation intervention).

Adherence to clinical exercise and occupational therapy

sessions were recorded by clinical exercise specialists and

occupational therapists using a training diary. Adherence

to the home-based exercise sessions were recorded by

patients using a provided training diary.

Outcome measures

Magnetic resonance imaging

Structural MR (magnetic resonance) images from 15

participants were acquired at baseline and 9-month fol-

low-up using a 3T Philips Achieva Scanner and a Philips

8 – channel head coil (Philips Healthcare. Best, The Neth-

erlands). Structural scans consisted of a T1 3D Turbo

Field Echo (TFE) scan (400 9 400, 130 slices,

1 9 1 9 1 mm voxels, TR = 5.8 msec, TE = 2.7 msec).

Voxel-based morphometry (VBM) was performed on

structural MR images to determine increases and decreases

in GM volume between baseline and 9 months. As imple-

mented in FSL-VBM Version 1.1, the VBM (Douaud et al.

2007), protocol included removal of nonbrain tissue from

each participant’s images, tissue segmentation into GM,

spatial normalization (nonlinearly to MNI 152) at

2 9 2 9 2 mm3 resolution and (nonlinear) registration to

a right-left symmetric, study-specific GM template (average

of all individual grey matter images). These images were

modulated and then smoothed with a Gaussian kernel of

~4.6 mm full width half maximum (FWHM).

Cognitive and executive function measures

Cognitive performance was evaluated at baseline and at

9 months using a variety of cognitive measures previously

shown to be sensitive in HD (Stout et al. 2012; Tabrizi

et al. 2013). The Color Word Interference Test (CWIT)

and Trail Making Test components of the Delis-Kaplan

Executive Function System (D-KEFS) (Delis et al. 2001,

2004) were used to examine response inhibition and cog-

nitive flexibility. The Symbol Digit Modalities Test

(SDMT) (Smith 1982) was used to examine information

processing speed and attention. Verbal learning and

memory were examined using the Hopkins Verbal Learn-

ing Test-Revised (HVLT-R)(Brandt 1991). All cognitive

assessments were performed by cognitive raters blinded to

the treatment condition.

Statistics

Demographic data are given as means and standard devi-

ations. We used linear regression to estimate the increase

or decrease in GM volume between baseline and

9 months. The regression model included separate

explanatory variables for each participant (for each sub-

ject’s mean effect) and age. Analysis was focused on

regions-of-interest (ROIs) defined a priori based on previ-

ous studies in HD shown to be functionally relevant in

terms of cognitive capacity (as reflected in episodic mem-

ory performance). ROIs included the striatum, hippocam-

pus, and dorsolateral prefrontal cortex (DLPFC).

Inferential statistics were carried out using a nonparamet-

ric permutation method (as implemented by FSL’s rando-

mise tool). Only clusters with >10 contiguous voxels at a

significance level of P < 0.05 were considered to be indic-

ative of significant longitudinal change. As we adopted an

exploratory analysis strategy with ROIs clearly defined a

priori, no correction for multiple comparisons was

applied. GM volume change was also evaluated beyond

the ROIs. In this case, maps were thresholded at P < 0.01

(uncorrected) and voxels were considered significant

within clusters of >10 contiguous voxels. The normality

of cognitive data was assessed using the Schapiro-Wilk

test. Changes in cognitive performance were assessed

using mean values at baseline and at 9 months with

paired t-tests. Statistical significance was set at (P ≤ 0.05).

All statistical analyses were performed using STATA 9.1

(Stata Corp, 4905 Lakeway Dr, TX). We then investigated

the functional relevance of change in GM volume in the

ROIs, as reflected by associations between significant vol-

ume changes and significant change in performance mea-

sures from the HVLT-R (follow-up score minus baseline

score): total recall, delayed recall, retention, and the rec-

ognition discrimination index (RDI). The HVLT-R was

chosen as dysfunction in recall and recognition memory

is an important clinical feature of HD (Montoya et al.

2006). In order to quantify GM volume change, we

created a single difference image for each participant by
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subtracting the follow-up from the baseline smoothed,

modulated image generated by the VBM protocol. The

relationship between volume change in ROIs and change

in cognitive function was then assessed voxel-wise by

means of FSL’s randomize tool. Age was included as a co-

variate in all analyses.

Results

Demographics

Table 1 displays demographic data and information on

disease duration, disease burden and severity of motor

abnormalities. Participants displayed high adherence to

the supervised clinical program (84.2%), moderate adher-

ence to the home-based program (58.6%) and high

adherence to occupational therapy sessions (79.2%).

Structural brain changes

Figure 1 shows significant volumetric increases in GM in

the DLPFC bilaterally and in the tail of the right caudate

nucleus after multidisciplinary rehabilitation. All remain-

ing ROIs, including the right hippocampus, left putamen,

and accumbens showed GM volume loss. Beyond these

ROIs, changes in GM volume were also observed. The

superior thalami, left inferior temporal pole, right subcal-

losal cortex, and parasagittal primary motor areas exhib-

ited increases in GM volume. By contrast, the left

anterior insula, right posterior cingulate/precuneus, left

lateral occipital cortex, subcallosal cortex, and focal areas

in the temporal cortex bilaterally showed GM volume loss

(Fig. 2), consistent with previous neuroimaging studies in

individuals with HD (Tabrizi et al. 2011, 2012, 2013;

Dominguez et al. 2013; Georgiou-Karistianis et al. 2013a).

Cognitive and executive function changes

Significant improvement was observed on the delayed

recall (number of words recalled after delay) component

of the HVLT-R after 9 months of multidisciplinary reha-

bilitation (see Table 2). No significant changes were

found for CWIT, TMT, and SDMT outcomes after

9 months of multidisciplinary rehabilitation (see Table 2).

(A) (B)

Figure 1. Significant GM volume changes after multidisciplinary rehabilitation in individuals with manifest HD (A) Significantly increased GM

volume in the DLPFC and right caudate nucleus tail after 9 months of multidisciplinary rehabilitation in individuals with HD (red-yellow), and a

significant correlation between increased GM volume in DLPFC and preserved performance on the RDI task (green). Results are displayed on the

study-specific template normalized to MNI space (P < 0.05, uncorrected). (B) Scatterplot illustrating the correlation between increased DLPFC

volume at the peak voxel and preserved performance on the RDI task.

Figure 2. Whole brain GM volume changes in individuals with manifest HD Results of the VBM analysis beyond the ROIs after 9 months of

multidisciplinary rehabilitation. GM volume loss in blue; GM volume increases in red-yellow. Results are displayed on the study-specific template

normalized to MNI space (P < 0.01, uncorrected).
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Correlation analyses

Increased GM volume in the DLPFC (bilaterally) was

found to be significantly associated with preserved perfor-

mance on the RDI of the HVLT-R (see Fig. 1).

Discussion

This exploratory investigation has shown that multidisci-

plinary rehabilitation is capable of increasing GM volume

and enhancing some aspects of cognitive function in HD.

Specifically, we found evidence of increased GM volume

in the right caudate and bilaterally in the DLPFC, as well

as an improvement in verbal learning and memory after

9 months of multidisciplinary rehabilitation. We also

found a significant association between increased GM vol-

ume in the DLPFC and preserved performance in verbal

learning and memory.

Similar to previous investigations in HD, we observed

GM volume loss in most cortical and subcortical brain

regions (Kassubek et al. 2005; Kipps et al. 2005; Peine-

mann et al. 2005; M€uhlau et al. 2007, 2009; Hobbs et al.

2011; Tabrizi et al. 2011, 2012, 2013; Dominguez et al.

2013; Georgiou-Karistianis et al. 2013a). In this study,

however, after multidisciplinary rehabilitation, we also

observed increased GM volume in the DLPFC and in the

right caudate nucleus in individuals with manifest HD.

While this is the first study to report such a finding,

recent work has shown that cognitive reserve (computed

as the composite of intelligence and educational status)

influences the rate of volume loss in caudate and

putamen structures in individuals with premanifest HD

(Bonner-Jackson et al. 2013). Moreover, environmental

enrichment has been shown to preserve peristriatal cere-

bral volume in the R6/1 HD mouse model (van Dellen

et al. 2000). Motor and cognitive interventions have addi-

tionally been shown to increase hippocampal volume,

white matter and gray matter volume as well as cortical

thickness in the left middle frontal gyrus, inferior frontal

gyrus, superior temporal gyrus in the elderly and those

with other neurodegenerative disorders (Boyke et al.

2008; Engvig et al. 2010, 2012; Erickson et al. 2010, 2011;

L€ovd�en et al. 2012; Burciu et al. 2013; Bonzano et al.

2014; Prosperini et al. 2014; Sehm et al. 2014). These

findings provide evidence to suggest that lifestyle factors

play an important role in modulating the pathology and

clinical profile of HD.

The structural brain changes observed in the present

study and others may reflect an increase in neurogenesis

and/or favorable changes to neuronal morphology (Lazic

et al. 2006; Nithianantharajah et al. 2009; Nithiananthara-

jah and Hannan 2013). This supposition stems from com-

pelling evidence showing that environmental enrichment

can increase markers of neurogenesis within the hippo-

campus (Lazic et al. 2006) as well as increase the diameter

of dendritic spines in the R6/1 HD mouse model (Nithia-

nantharajah et al. 2009). Molecular and cellular mecha-

nisms that may have encouraged the surmised

neurogenesis and/or alterations in neuronal morphology

in response to multidisciplinary rehabilitation include an

increased expression of neurotrophins like brain-derived

neurotrophic factor (BDNF), enhanced cerebral angiogen-

esis, and a decrease in elevated circulating glucocorticoids

(i.e. cortisol) (Rothman and Mattson 2013). BDNF

Table 2. Changes in cognitive function after 9 months of multidisciplinary rehabilitation in individuals with manifest HD.

Outcome measures Baseline (n = 15) Post-trial (n = 15) P value

CWIT

Color naming 48.35 � 18.86 52.35 � 22.57 0.0999

Word reading 34.00 � 10.97 35.35 � 9.77 0.3249

Inhibition 91.00 � 39.25 93.57 � 41.39 0.4525

TMT

Visual scanning 38.76 � 15.76 43.52 � 15.98 0.1149

Number sequencing 55.73 � 19.87 61.80 � 23.49 0.0507

Letter sequencing 61.92 � 34.05 66.21 � 30.77 0.1262

Motor speed 58.75 � 27.39 62.31 � 25.90 0.2433

HVLT-R

Free recall 17.66 � 5.56 16.73 � 6.21 0.2019

Delayed recall 4.92 � 2.36 6.28 � 3.14 0.0130*

Retention 76.16 � 29.21 81.22 � 27.32 0.1866

Recognition 8.06 � 3.08 8.93 � 2.34 0.0793

SDMT

Correct written 27.00 � 10.25 26.78 � 9.96 0.4525

Correct oral 31.00 � 14.17 28.46 � 15.59 0.1374

CWIT, Color Word Interference Test; TMT, Trail Making Trials; HVLT-R, Hopkins Verbal Learning Test-Revised; SDMT, Symbol Digits Modalities

Test. Significance was set at *P < 0.05.
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enhances neurite outgrowth, synaptogenesis and cell sur-

vival, encouraging neurogenesis and experience-dependent

synaptic plasticity (Rothman and Mattson 2013). Recent

preclinical data suggests that BDNF-dependent neurogen-

esis is tightly coupled with cerebral angiogenesis (Chen

et al. 2013), and that both are dynamically modulated by

changes in circulating glucocorticoid levels (Weinstein

et al. 2010; Shikatani et al. 2012; Gray et al. 2013). In

particular, elevated glucocorticoid levels dampen cerebral

angiogenesis and BDNF expression in healthy rodent’s

facilitating a decrease in neurogenesis (Shikatani et al.

2012; Gray et al. 2013; Rothman and Mattson 2013). It is

possible that multidisciplinary rehabilitation facilitates an

adaptive stress response that decreases circulating gluco-

corticoids, thereby enhancing cerebral angiogenesis and

BDNF expression, encouraging neurogenesis and struc-

tural brain changes in HD patients.

There are currently no therapies that arrest or attenuate

the progressive loss of cognitive function seen in individu-

als with HD. Here, we found evidence of an improvement

in verbal learning and memory after 9 months of multidis-

ciplinary rehabilitation. These findings extend on our pre-

vious work, where task-specific improvements in

processing speed measures were found after a 9 month

controlled investigation of multidisciplinary rehabilitation

in individuals with manifest HD (Thompson et al. 2013).

Moreover, these findings support experimental studies doc-

umenting improvements in cognitive performance in

rodent models of HD after environmental enrichment

(Wood et al. 2010, 2011). While evidence is limited in HD,

an increasing number of studies are showing that motor

and cognitive interventions positively impact on cognitive

function in the elderly (Liu-Ambrose et al. 2010; Erickson

et al. 2011; Bherer et al. 2013) and those suffering with

MCI (Hampstead et al. 2011, 2012; Smith et al. 2013), MS

(Solari et al. 2004; Flavia et al. 2010; Mattioli et al. 2010;

Shatil et al. 2010) and PD (Sammer et al. 2006; Calleo

et al. 2011; Par�ıs et al. 2011). It is likely that the improve-

ments in verbal learning and memory observed in this

study resulted from the positive impact of multidisciplinary

rehabilitation on caudate and DLPFC structures.

It is well-known that degeneration of GM contributes

to the development of cognitive deficits and progressive

loss of cognitive function (Scahill et al. 2013; Harrington

et al. 2014). In this study, we found a significant associa-

tion between increases in GM volume in the DLPFC and

preserved performance in verbal learning and memory.

This finding is not unexpected given that memory retrie-

val and recognition is driven primarily by DLPFC connec-

tivity in healthy individuals and in those with HD

(Georgiou-Karistianis et al. 2013b).

A number of limitations must be taken into account

when considering our findings. First, there was no control

group, which limits our ability to derive definitive conclu-

sions on the efficacy of multidisciplinary rehabilitation on

disease pathology and clinical features in HD. Second, the

small sample of HD participants in this study makes gen-

eralizability difficult. Lastly, participants remained on

medication throughout the study, which may have influ-

enced the therapeutic response to multidisciplinary reha-

bilitation.

Despite these limitations, our findings provide the very

first evidence that multidisciplinary rehabilitation is effec-

tive in increasing regional GM volume in cortical and sub-

cortical brain regions in HD. Results also show that

multidisciplinary rehabilitation is capable of improving

some aspects of cognition over a 9-month period. More-

over, we found that increased GM volume in the DLPFC

was associated with preservation of verbal learning and

memory. These findings collectively indicate that neuroplas-

ticity may still be present in HD and amenable to multidis-

ciplinary rehabilitation. Future randomized controlled trials

with larger sample sizes, longer duration interventions,

more comprehensive imaging and cognitive outcomes and

appropriate detraining periods are nevertheless required to

confirm and expand on our preliminary findings.
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