Rest versus Activity: Debating the Current Evidence in Concussion Management

February 24th, 2018
Combined Sections Meeting
New Orleans, LA

Speakers:
• Anne K. Galgon PT, PhD, NCS
 • University of the Sciences, Philadelphia, PA
• Anne Mucha PT, DPT, NCS
 • Centers for Rehab Services, University of Pittsburgh Medical Center, Pittsburgh, PA
• Paul G. Vidal PT, DPT, MHSc, OCS, FAAMPT
 • Specialized Physical Therapy, LLC, Cherry Hill, NJ
• Karen Skop PT, DPT, MS
 • James A. Haley VA Medical Hospital & Polytrauma Center, Tampa, FL

Disclosure

Speakers have nothing to disclose

Learning Objectives:
Upon completion of this course, participants will be able to:
• Describe the evidence for and against prescribed physical and rest following concussion.
• Discuss the pros and cons of active treatments for concussion
• Identify key considerations for return to activity

Outline:
• Background and Definitions
• Clinical Debate Statement #1
• Clinical Debate Statement #2
• Clinical Debate Statement #3
• Summary

Background
• Concussion is a highly prevalent injury (1 in 4 Americans, NPR 2016)
• Protection laws for student athletes in all 50 states
• 72% of physical therapist respondents treat patients with concussion. (Yorke et al, 2016)
• Physical therapists are frequently making return to play/activity decisions
• Limited consensus driven guidelines for concussion management
 • McCrory et al, CSG, 2017; Giza et al, AAN 2015; Broglio et al, NATA 2014; Sady et al, PMR, 2011; CDC-Ace Care Plans, 2008; VADOD 2016; Canadian ONF, 2015.
• Emerging research may challenge consensus recommendations!
Definition: Concussion and Acuity

- Concussion:
 - Mild TBI is a complex process triggered by a biomechanical insult to the brain, which is typically not associated with the presence of early structural damage on neuroimaging.
 - Diagnosis primarily made by symptoms:
 - Headache, fatigue, nausea, dizziness, difficulty concentrating, sleep disturbance, sensitivity to light and/or noise, balance problems, irritability, anxiety, and depression (Semple et al, 2015).

- Acuity Time Frames:
 - Early Acute: ≤ 7 days
 - Subacute: 8 Days to 3 months
 - Chronic: > 3 months
 - Persistent symptoms: > 6 months?

Recovery EndPoint

The endpoint of recovery from a concussive injury is multifaceted.

Example of Criteria:

- Return of neurocognitive functioning to preinjury levels,
- Return of balance function to preinjury levels,
- Absence of symptoms (or return to preinjury levels) at rest,
- Absence of symptoms when engaged in physical or cognitive activity.

Sady et al, Phys Med Rehabil Clin N Am. 2011

Definitions: Rest

- **Purpose/Rationale:**
 - To reduce exertion and associated neurometabolic stressors that accompany cognitive and physical activities.
 - "During the post-injury period of increased metabolic demand and limited adenosine triphosphate (ATP) reserves, non-essential activity draws oxygen and glycogen away from injured neurons." (Broglio et al 2015)

- **Reduce risk of secondary injury**
- **Activity that increase symptoms will increase recovery time**

Definition: Cognitive Rest

- **3 attributes (Schneider 2016):**
 - Freedom from physical or mental discomfort
 - Abstinence from mental exertion
 - Mental and emotional balance

Activities to avoid:

- Using a computer
- Reading
- Texting
- Watching television
- Playing video games
- Talking on the phone
- Bright lights and loud music
- School assignments
- Pressure of obligations

Physical Rest

- **Strict Rest:** "Bed Rest" (No Activity) or Symptoms limited basic ADLs
- **Categories of reduced activity:** (Grool et al, 2016)
 - Light aerobic: walking, stationary bike cycling
 - Moderate exercise: sport-specific exercise
 - Full exercise: Full practice and sports
Combined Cognitive and Physical Rest

Majerske 2008 –

Activity Intensity Scale consists of 5 ordinal categories

• 0 - No school or exercise activity
• 1 - School activity only
• 2 - School activity and light activity at home (eg, slow jogging, mowing the lawn)
• 3 - School activity and sports practice
• 4 - School activity and participation in a sports game

Definition: Active Intervention

Targeted specific medical, physical or psychological intervention (CISG, 2017)

• An individualized symptom-limited aerobic exercise program in patients with persistent post-concussive symptoms associated with autonomic instability or physical deconditioning
• Physical therapy program in patients with cervical spine or vestibular dysfunction
• Collaborative approach including cognitive behavioral therapy to deal with any persistent mood or behavioral issues.

Active Intervention: Targeted Intervention

• Mood and Anxiety
• Post-Traumatic Migraines
• Oculomotor Deficits
• Vestibular Deficits
• Cognitive Fatigue
• Cervical Spine Deficits
• Physical Deconditioning
• Autonomic Instability

Clinical Debate Statement #1

After an acute concussion, **strict rest is the gold standard**, a player should be removed from school AND sports until they no longer have symptoms.
Evidence Regarding Removal From Play (ie, Acute Rest)

Sideline Concussion Management

- Elbin et al, 2016
- Prospective study; 13-19 yo athletes
- 69 w/ diagnosed concussion:
 - N = 35 REMOVED from play at time of injury
 - N = 34 Continued to PLAY following injury for an average of 24.61 min
- Representation of collision sports (e.g., football, ice hockey, soccer, wrestling, rugby) was similar between REMOVED (45%, 31/69) and PLAY groups
- Athletes completed neurocognitive (ImPACT) and symptom reports at 1-7 and 8-30 days; also collected recovery time data

Removal From Play After Concussion and Recovery Time

<table>
<thead>
<tr>
<th></th>
<th>REMOVED (n = 35)</th>
<th>CONT’D TO PLAY (n = 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days to Medical Clearance*</td>
<td>21.97 ± 18.68 Days</td>
<td>44.37 ± 36.03 Days</td>
</tr>
</tbody>
</table>

*Continuing to Play doubled Recovery Time
- Athletes that continued to Play with a concussion were 8.80 times more likely to have protracted recovery ≥ 21 days
- Is this effect due to initial BRAIN REST vs other factors???

Concussion Pathophysiology

Acutely, concussion is a metabolic brain injury

More data to support this . . .

- 97 Collegiate (NCAA division 1) athletes with concussion – studied retrospectively
- Divided in those **immediately removed** (48.5%) from activity and those with **delayed removal** (51.5%)
- Delayed removal group averaged 4.9 more days missed than immediate removal group (after controlling for sex, concussion history, LD/ADHD diagnosis, psychological conditions, and acute symptom severity)
- Delayed removal athletes were 2.2 times more likely to have a prolonged recovery (8 or more days) after concussion compared with I-RFA

Asken et al, 2016

What should be prescribed acutely (after removal from play)?

- Implement strict physical rest
- Implement strict cognitive rest (school, social, screens, etc)
- Normal unrestricted activity
- Medication
- Start light exercise despite symptoms
- Start therapies: • Vestibular • Oculomotor • Cervical • Exertion
What do Consensus Guidelines say??

Published Guideline Recommendations regarding Activity:

<table>
<thead>
<tr>
<th>Guideline Source</th>
<th>Recommendations</th>
</tr>
</thead>
</table>
| American Academy of Pediatrics (2010) | - Discourage activities that require concentration and attention;
- Withhold physical activity until asymptomatic;
- Cognitive rest, including absence from school, shortening school day, reduction of workload, allowance of more time |
| NATA (2014) | - Avoid physical activity and limit cognitive activity to not exacerbate concussion symptoms;
- Activities of daily living that do not exacerbate symptoms may be beneficial and allowed;
- Temporary academic accommodations should be allowed;
- Exertion should not begin until patient no longer reports symptoms, has normal clinical examination, and has normal neurocognitive functioning/motor; exercise progression |
| NCAA (2013) | - Physical and cognitive rest until the acute symptoms resolve;
- Some athletes may require academic accommodations such as reduced workload, extended test-taking time, days off or shortened day |
| CISG (2017) | - Rest during the acute phase (24–48 hours);
- Gradual progression of physical and cognitive activity staying below symptom-exacerbation thresholds;
- Activity level should not bring on or worsen symptoms;
- Avoid vigorous exertion while recovering |

Cocoon Therapy???

- Consists of postinjury sensory deprivation; advocated by some clinicians for treating concussion.

18 yo female soccer player

- The patient was instructed to rest by her team physician and AT
- She was minimally active. Did not attend classes. Primarily stayed in her dorm room, resting most of the time. Attempted to watch soccer practice, with limited tolerance – so stopped attending.

1 week post injury: Clinical Exam

- HA 6-7/10 – generally constant
- Moderate c/o dizziness, imbalance, photo and phono-sensitivity, memory/concentration difficulty
- Poor sleep (difficulty falling asleep)
- Post Concussion Symptom Scale (PCSS): 42 (0-132)
- Neurocognitive Test Scores – moderately impaired across all domains

Now what ??

- Continue to rest until symptoms improve
- Implement more strict rest
- Start light exercise despite symptoms
- Implement therapies:
 - Vestibular
 - Oculomotor
 - Cervical
 - Exertion
- Return to unrestricted activity
- Medication
Back to the guidelines . . .

WHAT’S THE EVIDENCE:

- Many consensus guidelines for SRC advise physical and cognitive rest in the initial management of concussion
- Additionally, many guidelines recommend continued rest until patients are symptom-free, based on the assumption that physical and cognitive activity exacerbate symptoms and impairments, thereby prolonging recovery
- However, the evidence to support rest as an optimal treatment in facilitating recovery following a concussion is mixed
- Is prescribed rest DOGMA??

Rest as a treatment beyond the sideline

Moser et al, 2012

- Retrospective chart review of 49 high school and collegiate athletes prescribed strict rest following concussion (mean time since injury - 36 days)
 - no school, no homework or tests
 - no travel or shopping or trips outside of the home
 - no driving, no visits with friends or social visits in or outside of the home
 - increased sleep
 - significant reduction of television viewing; no watching athletic games or other visually intense movies, no video games, no computer usage, no texting
 - phone calls only if necessary
 - no reading unless minor
 - no chores, physical exercise, or physical activity resulting in perspiration
- Significantly improved performance on neurocognitive testing and decreased symptoms following prescribed cognitive and physical rest (p < .001)

Other Research . . .

 - Retrospective chart review
 - Student-athletes with both the highest and lowest levels of activity in the month following SRC had worse neurocognitive scores and slowest reaction times
 - Those who engaged in the intermediate levels of activity had the best scores and fastest reaction times

Published Guideline Recommendations regarding Activity:

<table>
<thead>
<tr>
<th>Source</th>
<th>Recommendations</th>
</tr>
</thead>
</table>
| American Academy of Pediatrics (2010) | • Discourage activities that require concentration and attention;
• Withhold physical activity until asymptomatic
• Cognitive rest, including absence from school, shortening school day, reduction of workload, allowance of more time |
| NATA (2014) | • Avoid physical activity and limit cognitive activity to not exacerbate concussion symptoms
• Activities of daily living that do not exacerbate symptoms may be beneficial and allowed
• Temporary academic accommodations should be allowed
• Exertion should not begin until patient no longer reports symptoms, has normal clinical examination, and has normal neurocognitive functioning/motor, exercise progression |
| NCAA (2013) | • Physical and cognitive rest until the acute symptoms resolve
• Some athletes may require academic accommodations such as reduced workload, extended test-taking time, days off or shortened day |
| CISG (2017) | • Rest during the acute phase (24–48 hours)
• Gradual progression of physical and cognitive activity staying below symptom-exacerbation thresholds
• Activity level should not bring on or worsen symptoms
• Avoid vigorous exertion while recovering |
Benefits of Strict Rest After Acute Concussion: A Randomized Controlled Trial

- Thomas et al 2016
- Pediatric patients seen in the ED (n=88)
- Prescribed 5 days of Strict Rest vs "Usual Care"
- Strict rest group reported higher number of symptoms and longer symptom duration

Grool et al, 2016
- Prospective, multicenter cohort study
- Ages 5-18 yrs; n > 2,400
- Surveyed activity levels following diagnosed concussion
- Patients who were physically active within 7 days of injury, in comparison to those who were inactive, were less likely to experience persistent post-concussive symptoms at 28 days.

What we know from animal studies . . .

- Exercise has potential benefit in rodents following experimental TBI:
 - Exercised rats w/ mTBI show increases in markers of neuroplasticity & neuro-protection and also show cognitive improvement compared to unexercised rats (Griesbach et al, 2004; Griesbach et al, 2008)
 - Neuroprotective effects of exercise shown when exercise was delayed after injury;
 - Rats w/ unrestricted activity in the first 6 days of injury showed poorer performance on a cognitive task compared with similarly injured rats that were restricted from activity until day 14 after injury
 - When activity was delayed until 14-20 days after injury – enhanced cognitive performance
 - Longer delay required when injury was more severe. (Griesbach et al, 2007)

Is this also true for humans???

Effects of prescribed rest on outcome after concussion (Sufrinko et al, 2017)

- Patients w/ signs of injury (LOC, confusion, disorientation, and PTA) in the ED benefitted from 5 days of prescribed rest after a concussion (p=0.05)
- Patients with predominantly symptoms (e.g. headache, dizziness, nausea) in the ED were more symptomatic when prescribed 5 days of strict rest (p=0.04)
- Conclusion: A limited amount of prescribed rest may benefit certain (more serious) injuries?

Is Concussion Heterogeneity an Important Consideration in Activity Prescription?

- Several researchers have proposed models to describe variable presentations following concussion:
 - Ellis et al, 2015
 - Merritt et al, 2015
 - Kenzie et al, 2017
 - Collins et al, 2014
Back to our case . . .

- At 1 week, she was referred for a multidisciplinary assessment
- Results of assessments & clinical interview:

Clinical Interview & Symptom Assessment

- FOCUSS
 - Total score 42
 - Higher symptoms for fatigue, reduced energy, sleep disturbance
- Visuals:
 - Visuals: Visuals with visual symptoms

Symptom Assessment

- **Cognitive**
 - Fatigue
 - Reduced energy
- **Vestibular**
 - Headache
- **Cervical**
 - Painful cervical pain
 - Headache

Physical Assessments

- **Cervical**
 - Full painfree cervical ROM
- **Vestibular**
 - VOMS:
 - No symptoms or abnormalities
 - VOR:
 - Subtle symptoms
- **Ocular**
 - mCTSIB: Normal

Cognitive Assessment

- **Migraine**
 - Headache
 - Migraine

Intervention - Case

- Resting for 1 week did not benefit this patient
- No evidence that continued rest would change this

- Presentation:
 - Primary:
 - Post-traumatic Migraine
 - Anxiety
- Secondary:
 - Vestibular
 - Cognitive

Evidence-based intervention:

- Medication
- CBT
- Psychotherapy
- Self Help/support Groups
- Exercise

- Darabaneanu et al, 2011
- Varkey et al, 2011
- Milos-Busch et al, 2010
Plan

- Implement supervised Exertion Rehabilitation for these specific issues
 - PT-supervised
 - Cardiovascular and dynamic components (for vestibular issues)
 - Monitored HR, BP & symptoms pre, during and post exercise
 - Patient to monitor and report on delayed response to ex (later that day and next am)
 - In clinic 1-2x/week w/ HEP daily
- Would consider medication or other measures if not responding to above within 2 weeks or adverse response
- First Exertion session:
 - Baseline symptoms: 2/10 HA
 - Bike 15 min – 2/10 HA; TM walk/jog intervals 10 min – 6/10 HA; Dynamic ex (lunges, squats, lateral cone touches, etc) – 5/10 HA, 3/10 dizziness
 - Post exercise symptoms: 4/10 HA, no dizziness or other symptoms
 - HEP prescribed

Case Progression:

- Elevated HA lasted 1-2 hours following first session, then returned to baseline. Was able to perform daily HEP based on initial Exertion session
- Exertion Visit 2:
 - Headaches no longer constant – now 3-4 days a week. Physical exertion brings on and/or worsens existing HA. Sleeping better since starting exercise.
 - HA provoked by exertion to same level (4/10), but able to do more and symptoms resolve faster than they did before (within 20 min)
 - HEP progressed
- Exertion Visit 3:
 - Only symptom is “brief, sharp headache pains” – few episodes/day no apparent triggers
 - Exercise therapy tolerance improved to 30 min of jogging and 30 minutes of dynamic exercise
 - HEP progressed
 - Allowed to participate in soccer practices – non-contact

At 4th Exertion Visit (seen by multidisciplinary team)

- Asymptomatic at rest; participating fully in school and soccer practices (non contact)
- Normal neurocognitive testing, normal vestibular-oculomotor exam
- No symptoms with high-intensity cardio and dynamic exertion workout
- Cleared to RTP

Clinical Debate Statement #1

- After an acute concussion, strict rest is the gold standard, a player should be removed from school AND sports until they no longer have symptoms.

What are your considerations?

- How do you decide whether to recommend physical rest, cognitive rest or to resume regular activity?
- When do you start active intervention?

Clinical Debate Statement #2

- Active Intervention should only begin after 3 weeks, if symptoms persists.
Has the pendulum swung too far?

Can we draw any parallels?
- Concept of loading in tendinopathy
- Pain Science Principles
- Nociception vs. Pain
- Labeling patient with condition (PCI)
- Presence of symptoms does not directly correlate with degree of tissue injury
- Reduced “threat”

Case Presentation

- Patient is a 20 yo professional cheerleader
- Dx: Concussion s/p MVA
- Onset: one week prior
- MOI: rear-ended
 - Patient reports hitting head on headrest and then head went forward
- PMH: unremarkable

Case Presentation

- CC: constant HA, cervical/thoracic pain, imbalance with walking, eye strain and blurry vision, difficulty with concentration and memory
- Sx’s w/ unsupported sitting, walking, computer, reading, texting
- Sx’s w/ rest

Anything else you want to now from subjective history?

Additional Subjective Information

- Imbalance with walking described as dizziness
- Experienced immediately
- On field: best predictor of protracted recovery (3 or more weeks) and post-concussion syndrome in high school football players
- No LOC
- No immediate amnesia

Results: Dizziness at the time of injury was associated with a 3.5x odds ratio (95% confidence interval: 1.1-11.4, P=0.02) with proportionate recovery from concussion. Simultaneously, the remaining on-field signs and symptoms were not associated with an increased risk of protracted recovery in the current study.

Case Presentation

- HA
 - 8 out of 10 at worst
 - 8 out of 10 at best
- Cervical/Thoracic pain
 - 5 out of 10 at worst
 - 2 out of 10 at best
- HA worse when neck pain worse
- Dizziness Handicap Inventory (DHI)
 - 48 out of 100
- Neck Disability Index (NDI)
 - 22 out of 50 (44%)
- SCAT
 - Total sx’s: 15 of 22
Objective Examination

- Oculomotor
 - Pursuits and saccades intact with reproduction of eye strain
 - Cover-Uncover: (+) exophoria
 - Accommodative convergence (NPC) = 10 cm
 - Accommodative amplitude: 16 cm
 - VORcx (VMS): (+) dizziness

- Vestibular
 - VOR: (+) reproduction of dizziness in horizontal and vertical planes
 - Dix-Hallpike: (-)
 - Head thrust test: not performed
 - MCTSIB on Biosway
 - Condition 4 (vestibular)
 - Abnormal
 - DGI = 23 out of 24
 - Horizontal head turns

- Musculoskeletal
 - Cervical ROM: WFL; (+) reproduction of cervical/thoracic pain with end-range flexion
 - Cervical passive mobility: normal/painfree
 - (+) tightness/pain of suboccipital and left sternocleidomastoid muscle

Assessment/Diagnosis

- Patient with impaired oculomotor, vestibular, and muscle performance
- Clinical presentation consistent with post concussion symptoms s/p MVA
- Ocular, vestibular, cervical clinical trajectory
- Prognosis: Good
Clinical Decision Making

- Prognosis based on age, unremarkable PMH, 7 days post onset
- Initial treatment strategy/prioritization
 - Manual physical therapy to cervical spine
 - Light aerobic activity

Clinical Decision Making

- If manual physical therapy and light aerobic activity can significantly decrease symptoms, then progress by adding ocular, vestibular, and progressive aerobic exercises

Clinical Decision Making

- Exercise Treatment for Postconcussion Syndromes: A Pilot Study of Changes in Functional Magnetic Resonance Imaging Activation, Physiology, and Symptoms

Clinical Decision Making

- Vestibular Rehabilitation for Dizziness and Balance Disorders After Concussion

Case Outcome

- 8 visits over 6 weeks
- Initially allowed a 2 point increase in sx’s during treatment
- Okay for symptoms reproduction as long as it resolves; avoid “flare-up”
- Not doing harm or further damage mindset
- Dethreatens symptoms, promotes activity, enhances self recovery
- Multi-modal treatment
 - Cervical, vestibular, ocular, and aerobic conditioning
 - Full resolution of sx’s
 - Full return to activity, including cheerleading
Clinical Debate Statement #2

- Active intervention should only begin after 3 weeks, if symptoms persist.

Vote Again

What are your considerations?

- What dictates when you start active interventions with a client?

Clinical Debate Statement #3

Individuals should be **symptom limited** before progressing in therapy

Vote Again

Consensus statement says...

> If any concussion-related symptoms occur during the stepwise approach, the athlete should drop back to the previous asymptomatic level and attempt to progress again after being **free of** concussion-related symptoms for a further 24-hour period at the lower level.

Consider this...

- Sub acute Achilles tendinopathy
 - Patient experiences pain during therapy
 - Stop treatment?
 - Do we follow CPG & best EBM?
 - Progressive eccentric loading of the tendon is the best evidence based practice despite some pain (Kingma et al 2007)

What about neuro world? (Hall et al 2016)

Effectiveness of Vestibular Rehabilitation
- Strong recommendation (Level I) that vestibular rehabilitation should be offered to patients with symptoms due to:
 - Acute, Subacute, & Chronic Unilateral Hypofunction
 - Bilateral Hypofunction, including pedestrian
- Benefits:
 - Reduces dizziness, vertigo, improves gaze stability and reduces imbalance and falls
 - Enhances activities of daily living and quality of life
- Risks:
 - Potential increase in cost & time for patient to travel
 - May increase symptom intensity if treatment starts before recovery is achieved
- Studies show there is a paucity of benefit compared to harm
- Exclusions:
 - Compromised vestibular loss, cognitive or mobility deficit that impairs office or clinic application, or active intervened cause

Based on theory?
- Metabolic changes must be on-going if sx arise with activity?
- Symptoms in therapy? or during recovery?
- Evidence is limited
- Most research begins in those that have persistent sx
- Evidence is lacking detail as to how much symptom provocation OK (Dobney et al, 2017)
 - Evaluated active rehab at <2, 2,3,4,5,6 wks with persistent symptoms in youth
 - Less than 2 weeks and 6 wks made the greatest improvement* in symptoms

“Early PT for dizziness after SRC” Reneker et al 2017

- 2X wk X 8 wks
- "Familiar physical symptoms could be aggravated during sessions"
- Monitored baseline, sx increase, and return to baseline of sx

Days from concussion to PT examination	12.3 (1.6)	11.8 (1.8)	20
Total score on the PCS	39.9 (15.4)	39.2 (15.5)	66
Score on cognitive- affective	11.9 (5.6)	16.4 (5.9)	20

“Symptom response following acute bouts of exercise in concussed and non-concussed individuals”

- Balasundaram et al 2013
- Systematic review
- Compared concussed / non concussed and symptom inventory post exercise
- No significant difference

“Evaluation of the Zurich Guideline & exercise testing for RTP in Adolescents” Darling et al (2014)

- Injury → Evaluation (+ sx during eval) → BCTT → Begin RTP

<table>
<thead>
<tr>
<th>Age (median)</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior mTBI</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>BCTT</td>
<td>29</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>Day injury-</td>
<td>9</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Injury-free</td>
<td>14</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>BCTT</td>
<td>16</td>
<td>22</td>
<td>24</td>
</tr>
</tbody>
</table>

“Effectiveness of Vestibular Rehabilitation Therapy for Treatment of Concussed Adolescents with Persistent Symptoms of Dizziness and Imbalance”

Park K, Ksiazek T, Olson B. Journal of Sport Rehabilitation (pending publication)
- Vestibular Therapy initiated after 4 wks & 12-18 y/o
- Grade B evidence to support vestibular rehab versus cognitive & physical rest
 (30 studies → 4 met inclusion criteria)
- 1 RCT Timing of clinical intervention inconclusive
- Minimal guidance on symptom provocation
Schneider et al. (2014) compared: Cervical spine tx + vestibular rehab VERSUS Physical and cognitive rest

- Only discussed HA as controlling sx before engaging in vestibular rehab
- >10 days 73.3% vs 7.1% returned to sport (8 wks)
- 8 wks 1X/wks sub-sx exercises

Case 3: Symptom provocation

- 31 y.o. surgical technician
- While training for a triathlon 6 wks ago:
 - Bike slid out from under her while rounding a curve, landing on her R shoulder, R knee, twisting lower leg, hitting her head hitting on the asphalt.
 - No LOC. She remembers the event, but time is “spotty” after the fall.
 - Terrible HA & “feeling off” after fall
 - A friend who was training with her brought her to the ER.

Imaging negative – MRI head/neck, spine
- Sustained neck, shoulder and upper back injuries, primarily musculoskeletal, with large abrasions remaining on her right shoulder
- Diagnostic R shoulder radiograph + US revealed Grade 2 sprain (Rockwood classification)
- Knee radiograph negative
- NDI: 31%

HA: 2/10, base of skull, radiating forward with stabbing pain behind R eye worse ~ mid-day increases to 7/10
Cervical: Pain localized D&R with cranio-flexion-rotation test, some restrictions in end ROM R, poor control cervical extension
Shoulder: pain localized to AC joint; overhead or horizontal add aggravates
Knee: pain medial joint, feels unstable, giving way occasionally after WB following prolonged positions

Clinical working diagnosis:
- Cervical – whiplash type symptoms with cervicogenic headache component
- Shoulder – AC sprain
- Knee – MCL sprain, faulty movement patterns, extraarticular edema & likely variable intraarticular swelling

As you begin your intervention, warm-up on the bicycle, client becomes extremely lightheaded, nauseous and complains that her headache is worse

More “concussion” subjective – lightheaded, HA nausea, photosensitivity, worse with exercise, end of day (after work) with neck ROM
DHI: 42%
Functional: 16
Emotional: 14
Physical: 12
Case 3: Symptom provocation

- Post-Concussion Symptom Scale

- Patient goals:
 - Get through the work day with less pain
 - Feel “normal”
 - Prioritizes head/neck over knee

Vestibulo-ocular clinical examination
- Pursuits: normal, symmetrical
- Saccades: normal
- Convergence: 12 / 7 / 5 cm
- Tests for ocular alignment: exophoria
- Head Impulse Test: Negative
- Hallpike-Dix: no indication
- SOT: sway conditions 3, 6
- VAS dizziness after testing: 8/10

Exercise tolerance:
- Assess her symptoms using the Buffalo Concussion Treadmill Test
- Target provoking symptom: HA, nausea, lightheaded
- Resting HR: 96 bpm
- HR: 145 symptom provoking (lightheaded/nausea increased 3 points)
- Time to test completion: 14 minutes
- BP: Normal response
- Intervention: 80% sx provoking HR – 114 bpm
- HEP: 20-30 minute/day 5-6X/week aerobic activity at 114 bpm

Updated clinical working diagnosis:
- Protracted recovery from concussion – cervical clinical trajectory with exercise induced sx
- Cervical – whiplash type symptoms with cervicogenic headache component
- Aggravated by exercise, light, sustained positions (at work)
- Upper cervical headache component
- Multisensory – Visual Motion Sensitivity – prioritizing visual information for balance (visual dependence)
- Musculoskeletal:
 - Shoulder – AC sprain
 - Knee – MCL sprain, faulty movement patterns, extraarticular edema & likely variable intraarticular swelling

Algorithm stresses sub-sx exercise
- Pt with visual motion sensitivity
- What is the treatment?
 - Habituation therapy
 - But this will exaggerate sx?
 - How much is enough?
What does the literature say?

- Resolution of sx w/in 15-30 minutes following exercises

- Sx expected to increase for the 1st 1-2 wks after beginning a rehabilitation program

Can this apply to concussion rehabilitation?

Back to our case:
Clinical decision point...
what to do now?

Goal #1: Have “less pain” through work day
- Cervical spine intervention
 - Literature + outcomes for manual intervention, exercise, proprioceptive / kinesthetic training
 - Education on posture & pacing (if possible)

Goal #2: Feel “normal”
- Initiate light aerobic activity –
 - Begin habituation therapy for visual motion sensitivity
 - Symptom recovery after 15-30 minute after session? Or less?
 - Set target for sx exacerbation (2-3 points?)
 - Facilitate compliance
 - Get “buy in” from patient

Clinical Debate Statement #3
Individuals should be symptom limited before progressing in therapy

What are your considerations?

- If you progress a client who is symptomatic, do you limit the progression based on a criteria?
- What tells you that you can progress your patient’s program?

What we agree on . . .

- Strict rest is not indicated for treating concussion beyond the acute phase.
- There is evidence that active intervention can improve outcomes following a concussion.
- There is insufficient evidence for requiring symptom-free status in order to progress activity.

What We Don’t Know

- Does modified rest and modified activity benefit some patients? Which patients? What type of activity? What is the timing and amount of rest versus activity.
- What type of intervention is best? When should intervention be implemented? Dosage?
- What level and type of symptom provocation is acceptable? Should symptom provocation influence return to activity?
International Conference for Vestibular Rehabilitation: Translating Research to Advance Practice

• “Vestibular Rehab Spanning the Globe”
• Hilton Palmer House Hotel, Chicago, IL
• August 17-19, 2018
• Sponsored by the Academy of Neurologic Physical Therapy
• #APTAICVR
• #globalvestib
• Website: z.umn.edu/APTAICVR
• Poster Applications: z.umn.edu/APTAICVRPosters