Allen J, Kautz S, Neptune R. Forward propulsion asymmetry is indicative of changes in plantarflexor coordination during walking in individuals with post-stroke hemiparesis. *Clinical Biomechanics* 2014:06.001

Bowden MG, Balasubramanian CK, Neptune RR, Katz SA. Anterior/posterior ground reaction forces as a measure of paretic leg contribution in hemiplegic walking. *Stroke*, 2006; 37: 872-876

David J. Clark D, Patten C. Eccentric Versus Concentric Resistance Training to Enhance Neuromuscular Activation and Walking Speed Following Stroke. *Neurorehabil Neural Repair published online 4 January 2013*

Eng JJ, Mulroy SJ. Stepping Forward with Gait Rehabilitation. *PT Journal*, 2010

Finley, Perreault, Dhaher. Stretch Reflex Coupling between the hip and knee: implications for impaired gait following stroke. *Experimental Brain Research*. 2008; 188:4

Jonkers I, Delp S, Patten C. Capacity to increase walking speed is limited by impaired hip and ankle power generation in lower functioning persons post-stroke. Gait and Posture, 2009;29:129-137

All About That Base – Walt Weiss, MPT, NCS

CSM 2016
Knarr BA, Kesar TM, Reisman DS, Binder-Macleod SA, Higginson JS. Changes in the activation and function of the ankle plantar flexor muscles due to gait retraining in chronic stroke survivors. Journal of NeuroEngineering and Rehabilitation 2013, 10:12

Neptune, Kautz, Zajac. Contributions of the individual plantar flexors to support, forward progression, and swing initiation during walking. Journal of Biomechanics 2001;34:1387-98

Pattern et al. Gait speed improves significantly following dynamic high intensity resistance training in persons post stroke. *Stroke* 2007; 38: 466-467

Weiss WB, Mulroy SJ, Gronley JK, Perry J. Rigid AFO Impairs Walking Ability in Individuals with Hemiparesis from CVA. *Gait and Posture*, 2002;16(S1):82-82
